
CEWES MSRC/PET TR/99-15

Using WebHLA to Integrate HPC FMS Modules with
Web/Commodity based Distributed Object Technologies

of CORBA, Java, COM and XML

by

Geoffrey C. Fox
Wojtek Furmanski

Ganesh Krishnamurthy
Hasan T. Ozdemir

Zeynep Odcikin Ozdemir
Tom A. Pulikal

Krishnan Rangarajan
Ankur Sood

04h01499

Work funded by the DoD High Performance Computing
Modernization Program CEWES
Major Shared Resource Center through

Programming Environment andTraining (PET)

Supported by Contract Number: DAHC94-96-C0002
Nichols Research Corporation

Views, opinions and/or findings contained in this report are those of the author(s) and should not be con-
strued as an official Department of Defense Position, policy, or decision unless so designated by other
official documentation.

1

Using WebHLA to Integrate HPC FMS Modules with Web/Commodity based
Distributed Object Technologies of CORBA, Java, COM and XML

Geoffrey C. Fox, Ph. D., Wojtek Furmanski, Ph. D.,

 Ganesh Krishnamurthy, Hasan T. Ozdemir, Zeynep Odcikin-Ozdemir, Tom A. Pulikal, Krishnan Rangarajan, Ankur Sood

Northeast Parallel Architectures Center, Syracuse University
111 College Place, Syracuse University, Syracuse NY 13244-4100

{gcf, furm, gkrishna, timucin, zeynep, tapulika, krrangar, asood} @ npac.syr.edu

Keywords:
Interactive Simulation, Military, Personal Computers, Standards

ABSTRACT

HLA standards for interoperability between various DoD Modeling and Simulation paradigms are being enforced in parallel with
the rapid onset of new Object Web / Commodity standards for distributed objects and componentware, emergent at the crossroads of
CORBA, COM, Java, and XML technologies. WebHLA explores synergies between and integrates both trends by offering Object Web
based implementation of the HLA framework. Our goal is to deliver a uniform platform that facilitates conversion of legacy codes to
and development of new codes in compliance with HLA, HPC and Object Web standards. We outline here the overall design of
WebHLA, we summarize the system components prototyped so far and we illustrate our approach for one HPC FMS application –
Parallel CMS (Comprehensive Mine Simulator) - in the area of large scale minefield simulation and countermine engineering.

1. INTRODUCTION

We present here early results of our work on Web /
Commodity based High Performance Modeling and
Simulation, conducted as part of the academic branch of the
Forces Modeling and Simulation (FMS) domain within the
DoD HPC Modernization Program. Our approach explores
synergies between ongoing and rapid technology evolution
processes such as: a) transition of the DoD M&S standards
from DIS and ALSP to HLA; b) extension of Web
technologies from passive information dissemination to
interactive distributed object computing offered by
CORBA, Java, COM and W3C WOM; and c) transition of
HPCC systems from custom (such as dedicated MPPs) to
commodity base (such as NT clusters).

One common aspect of all these trends is the enforcement
of reusability and shareability of products or components
based on new technology standards. DMSO HLA makes
the first major step in this direction by offering the
interoperability framework between a broad spectrum of
simulation paradigms, including both real-time and logical
time models (DMSO 1998).

However, HLA standard specification leaves several
implementation decisions open and to be made by the
application developers - this enables reusability and
integrability of existing codes but often leaves developers
of new simulations without enough guidance.

In WebHLA, we fill this gap by using the emergent
standards of Web based distributed computing – we call it

Pragmatic Object Web (Orfali 1998; Fox et al. 1999) - that
integrate Java, CORBA, COM and W3C WOM models for
distributed componentware as illustrated in Fig. 1.

Figure 1: Pragmatic Object Web concepts and components.

We believe that WebHLA, defined as the convergence
point of the standardization processes outlined above will
offer a powerful modeling and simulation framework,
capable to address the new challenges of DoD computing
in the areas of Simulation Based Design, Testing,
Evaluation and Acquisition.

In this document, we summarize the WebHLA architecture
(Section 2), we review the status of WebHLA components
as of Feb ’99 (Section 3) and we illustrate our approach on

2

example of one large scale HPC FMS application – Parallel
CMS (Section 4).

2. WEBHLA OVERVIEW

The overall architecture of WebHLA follows the 3-tier
architecture of our Pragmatic Object Web (Fox et al. 1999)
(see Figure 1) with a mesh of JWORB (Java Web Object
Request Broker) based middleware servers, managing
backend simulation modules and offering Web portal style
interactive multi-user front-ends. JWORB is a multi-
protocol server capable to manage objects conforming to
various distributed object models and including CORBA,
Java, COM and XML. HLA is also supported via Object
Web RTI (OWRTI) i.e. Java CORBA based implementation
of DMSO RTI 1.3, packaged as a JWORB service. As
illustrated in Fig. 1, objects in any of the popular
commodity models can be naturally grouped within the
WebHLA framework as HLA federates and they can
naturally communicate by exchanging (via JWORB based
RTI) XML-ized events or messages packaged as some
suitable FOM interactions.

Figure 2: Example of protocol integration support in JWORB.

HLA-compliant M&S systems can be integrated in
WebHLA by porting legacy codes (typically written in
C/C++) to suitable HPC platforms, wrapping such codes as
WebHLA federates using cross-language (Java/C++)
RTICup API, and using them as plug-and-play components
on the JWORB/OWRTI software bus. In case of previous
generation simulations following the DIS (or ALSP) model,
suitable bridges to the HLA/RTI communication domain
are also available in WebHLA, packaged as utility
federates. To facilitate experiments with CPU-intense HPC
simulation modules, suitable database tools are available
such as event logger, event database manager and event
playback federate that allow us to save the entire simulation
segments and replay later for some analysis, demo or
review purposes. Finally, we also constructed SimVis – a
commodity (DirectX on NT) graphics based battlefield

visualizer federate that offers real-time interactive 3D
front-end for typical DIS=>HLA entity level (e.g. ModSAF
style) simulations.

In the following, we describe in more detail in Chapter 3
the WebHLA components listed above, followed (in
Chapter 4) by an example of using the system to integrate a
realistic large scale HPC FMS simulation.

3. WebHLA COMPONENTS

3.1 JWORB based Object Web RTI

DMSO’s longer range plan includes transferring HLA to
industry as CORBA Facility for Modeling and Simulation.

Figure 3: Top view representation of the Object Web RTI.

Anticipating these developments, we have recently
developed in one of our HPCMP FMS PET projects at
NPAC an Object Web based RTI (Fox et al.1998c)
prototype, which builds on top of our new JWORB (Java
Web Object Request Broker) middleware integration
technology. JWORB is a multi-protocol Java network
server, currently integrating HTTP (Web) and IIOP
(CORBA) and hence acting both as a Web server and a
CORBA broker (see Fig. 2) Such server architecture
enforces software economy and allows us to efficiently
prototype new interactive Web standards such as XML,
DOM or RDF in terms of an elegant programming model
of Java, while being able to wrap and integrate multi-
language legacy software within the solid software
engineering framework of CORBA.

We are now testing this concept and extending JWORB
functionality by building Java CORBA based RTI
implementation structured as a JWORB service and
referred to as Object Web RTI (see Fig. 3). Our
implementation includes two base user-level distributed
objects: RTI Ambassador and Federate Ambassador, built
on top of a set of system-level objects such as RTI Kernel,
Federation Execution or Event Queues (including both
time-stamp- and receive-order models). RTI Ambassador is

3

further decomposed into a set of management objects,
maintained by the Federation Execution object, and
including: Object Management, Declaration Management,
Ownership Management, Time Management and Data
Distribution Management.

Figure 4: RTI services (rounded rectangles) implemented as
CORBA objects in Object Web RTI.

RTI is given by some 150 communication and/or utility
calls, packaged as 6 main management services: Federation
Management, Object Management, Declaration
Management, Ownership Management, Time Management,
Data Distribution Management, and one general purpose
utility service. Our design is based on 9 CORBA
interfaces, including 6 Managers, 2 Ambassadors and
RTIKernel. Since each Manager is mapped to an
independent CORBA object (see Fig. 4), we can easily
provide minimal support for distributed management by
simply placing individual managers on different hosts.

Figure 5: Architecture of C++ RTI API that allows to link C++
RTI clients with Java RTI services of OWRTI.

To be able to link C++ clients with OWRTI, we developed
a C++ library (see Fig. 5) which: a) provides RTI C++
programming interface; and b) it is packaged as a CORBA
C++ service and, as such, it can easily cross the language
boundaries to access Java CORBA objects that comprise
our Java RTI. Our C++ DMSO/CORBA glue library uses
public domain OmniORB2.5 as a C++ Object Request
Broker to connect RTI Kernel object running in Java based
ORB. RTI Ambassador glue/proxy object forwards all
method calls to its CORBA peer and Federate Ambassador,

defined as another CORBA object running on the client
side, forwards all received callbacks to its C++ peer. This
library is running on Windows NT, IRIX and SunOS
systems.

3.2 Parallel ports of selected M&S modules

In parallel with prototyping core WebHLA technologies
described above, we are also analyzing some selected
advanced M&S modules such as the CMS (Comprehensive
Mine Simulator) system developed by Steve Bishop’s team
at Ft. Belvoir, VA that simulates mines, mine fields,
minefield components, standalone detection systems and
countermine systems including ASTAMIDS, SMB and
MMCM. The system can be viewed as a virtual T&E tool
to facilitate R&D in the area of new countermine systems
and detection technologies of relevance both for the Army
and the Navy. We recently constructed a parallel port of
the system to Origin2000, where it was packaged and can
be used as either a DIS node or as an HLA federate.

Origin systems support a variety of parallel programming
tools. These include: a) Parallel Compilers that take
sequential Fortran, C or C++ codes, optionally with some
user-provided compiler directives (pragmas), and they
return the corresponding parallel codes, generated in either
fully automatic and semi-automatic (compiler directives
based) parallelization modes; b) Message Passing libraries
such as MPI, PVM, and Cray SHMEM; c) Scientific &
Math Libraries as made available in the Silicon Graphics
Cray Scientific Library (SCSL) and other third party
libraries; d) Operating system-based inter-process and
inter-thread communication via standards-based sockets,
pthreads, and shared memory.

Based on the analysis of the sequential CMS code, we
found the semi-automatic, compiler directives based
approach as the most practical parallelization technique to
start with in our case. The most CPU-intensive inner loop
of the CMS simulation runs over all mines in the system
and it is activated in response to each new entity state PDU
to check if there is a match between the current vehicle and
mine coordinates that could lead to a mine detonation.
Using directives such as 'pragma parallel' and 'pragma
pfor' we managed to partition the mine-vehicle tracking
workload over the available processors, and we achieved a
linear speedup up to four processors. For large
multiprocessor configurations, the efficiency of our
pragmas based parallelization scheme deteriorates due to
the NUMA memory model. Indeed, on a distributed shared
memory architecture such as Origin, the latency for a CPU
to access main memory increases with the distance to the
physical memory accessed and with the contention on the
internal network. In consequence, the cache behavior of the
program has a significant impact on the performance. To
assure scalability across the whole processor range, we
need therefore to enforce data decomposition that matches
the already accomplished workload/loop decomposition.
Our initial experiments with enforcing such full
decomposition by using a combination of pragma directives

4

did not succeed, most likely due to rather complex object
oriented and irregular code processed in the CMS inner
loop. We are currently rebuilding and simplifying the inner
loop code so that the associated memory layout of objects
is more regular and hence predictable. For example we are
replacing linked lists over dynamic object pointers by
regular arrays of statically allocated objects etc.

Having ported the CMS code to Origin2000, we also
converted it from DIS to HLA simply by mapping all PDUs
to the corresponding HLA interactions and by using C++
RTI API that offers connectivity between the C++ and Java
RTI models. An HLA port abstraction layer was introduced
that allows for easy switch between DIS and HLA
communication modes with the minimal modification of
the original code. CMS Federate Ambassador receives
interactions from RTI and it passes them to the HLA port
that translates them into DIS PDU, to be further parsed
internally by the legacy CMS code. In a similar way, HLA
port translates PDUs generated internally by the CMS into
HLA interactions before passing them to the RTI
Ambassador.

3.3 JDIS: DIS-HLA Bridge and Event I/O Manager

DIS/HLA bridge for CMS described above was constructed
internally inside the CMS federate code. In an alternative
approach, explored for ModSAF modules, we use another
DIS-HLA bridge that operates as an independent process
and acts as DIS node on the input channel and as an HLA
federate on the output channel. We constructed such a
bridge called JDIS in Java, starting from the free DIS Java
parser offered by the dis-java-vrml working group of the
Web3D Consortium and completing it to support all PDUs
required by the linked ModSAF + CMS simulators.

Figure 6: JDIS Front-End control and display panel.

JDIS provides linkage between DIS applications such as
ModSAF and CMS running as HLA application. JDIS
receives DIS PDUs produced by ModSAF, translates them
into HLA interactions and lets RTI forward them to CMS.

JDIS can also write / read PDUs from a file and hence it
can be used to log and playback sequences of simulation
events. We also used this tool to generate point-like PDU
probes as well as stress test PDU sequences when testing
and measuring performance of Parallel CMS.

Visual front-end of JDIS, illustrated in Fig. 6, supports
runtime display of the PDU flow, and it offers several
controls and utilities, including: a) switches between DIS,
HLA and various I/O (file, database) modes; b) frequency
calibration for a PDU stream generated from file or
database; c) PDU probe and sequence generators; d) simple
analysis tools such as statistical filters or performance
benchamrks that can be performed on accumulated PDU
sequences.

In order to facilitate the transmission of PDUs and their
storage in the Database, we adopted XML as a uniform
wire format and specified a process for converting all
PDUs to XML format. More specifically, we defined an
interface called XML-izable and a class Protocol Data
Unit that implements this interface. This interface defines
methods for reading, writing, inserting and extracting
PDUs in an XML format in the Document Object Model.

We have written implementations for converting most of
the PDUs in the XML format. These include the Entity
State, Detonation, Collision, MineField, Transmitter,
Receiver, Acknowledge, Designator, Fire, Repair
Response, Repair Complete, Resupply Cancel, Resupply
Received, Signal, Service Request, Signal, Start / Resume,
Stop / Freeze, Mine, MineField Request, MineField
Response, MineField State and MineFeld Nack.

There is an ongoing standardization effort within the HLA
community called A Real-Time Platform Reference FOM
(RPR-FOM) with the aim to define a FOM that offers
complete mapping of DIS. Our JDIS will fully comply with
RPR-FOM after the standard specification if completed.

3.4 PDUDB: Event DB Logger and Playback Federate

Playing the real scenario over and over again for testing
and analysis is a time consuming and tedious effort. A
database of the equivalent PDU stream would be a good
solution for selectively playing back segments of a once
recorded scenario. For a prototype version of such a PDU
database we used Microsoft’s Access database and Java
servlets for loading as well as retrieving the data from the
database using JDBC.

The PDU logger servlet receives its input via HTTP PORT
message in the form of XML-encoded PDU sequences.
Such input stream is decoded, converted to SQL and stored
in the database using JDBC. The DIS header field common
to all the PDUs is stored in a separate table from the PDU
bodies. This table has all the attributes in the DIS header
like the PDU type, timestamp, etc. When the PDUs are
generated from the database this timestamp value is used

5

for calculating the frequency with which the PDUs are to
be send. Some PDUs have some variable number of
attributes like articulation parameters etc., and these
attributes are stored in separate tables so the entire database
is normalized.

The Playback is done using another servlet that sends the
PDUs generated from the database as a result of a query.
The servlet is activated by accessing it from a web browser.
Currently the queries are made on timestamps. But any
possible queries can be made on the database to retrieve
any information. The servlet can send the PDUs either in
DIS mode or in HLA mode.

PDU-DB also has a dynamic HTML interface to the tables
and data stored in the database. The interface lets you select
any of the PDU tables and browse quickly and efficiently
through the individual records or groups in the table.

3.5 SimVis: DirectX based Battlefield Visualizer

In our Pragmatic Object Web approach, we integrate
CORBA, Java, COM and WOM based distributed object
technologies. We view CORBA and Java as most adequate
for the middleware and backend, whereas COM as the
leading candidate for interactive front-ends due to the
Microsoft dominance on the desktop market.

Of particular interest for the M&S community seems to be
the COM package called DirectX which offers multimedia
API for developing powerful graphics, sound and network
play applications, based on a consistent interface to devices
across different hardware platforms.

Figure 7: Sample screen from CMS simulation in SimVis.

Using DirectX/Direct3X technology, we constructed a real-
time battlefield visualizer, SimVis (see Fig. 7) that can
operate both in the DIS and HLA modes. SimVis an NT
application written in Visual C++ and it contains the
following components: a) internal HLA-DIS bridge,
constructed in a similar way as for Parallel CMS discussed

above; b) a fast Winsock library based PDU parser; c)
Direct3D based rendering engine. PDU parser extracts the
battlefield information from the event stream, including
state (e.g. velocity) of vehicles in the terrain, position and
state of mines and minefields, explosions that occur e.g.
when vehicles move over and activate mines etc. The
parser performs also suitable type conversions for the
network to NT data formats, it constructs the suitable
memory data structures and it passed them to the viewer.

The viewer was created using the DirectX/Direct3D API.
The ModSAF terrain is the input for a sampler program,
which provides vertices for each of the faces. The sampler
program also provides the colors and texture type for each
face of the terrain. Using these data, faces are constructed
& added to the terrain mesh. Then normals are generated
for these faces and the terrain is constructed. After
construction, the terrain is added as a visual object to the
scenario scene. Geometry objects and animation sets for
typical battlefield entities such as armored vehicles (tanks)
and visual events such as explosions were developed using
3D Studio MAX authoring system.

SimVis visual interactive controls include base navigation
support in terms of directional keys (left, right, up, down,
Home, End) as well as some other modes and options,
including: a) various rendering modes (wireframe, flat,
Gouraud; b) mounting the camera/viewport on a selected
vehicle or plane; c) several scene views such as Front, Top,
Right, Left and Satellite Views.

4. APPLICATION EXAMPLE: PARALLEL CMS

We illustrate now how all WebHLA components described
above cooperate in one specific HPC FMS application –
Parallel CMS.

Figure 8: Parallel CMS demo at SC’98 in Orlando, FL.

CMS is an advanced DIS system under development by the
Night Vision Lab at Ft. Belvoir, VA. CMS simulates a
broad spectrum of mines and minefield to interact with

6

vehicles such as those provided by ModSAF, on the virtual
battlefield. Modern warfare can require millions of mines
to be present on the battlefield, such as in the Korean
Demilitarized Zone or the Gulf War. The simulation of
such battlefield arenas requires High Performance
Computing support. Syracuse University is building
Parallel and Metacomputing Support for CMS by porting
the CMS module to Origin2000 and linking it with a
collection of distributed simulators handling terrain,
vehicles and visualization.

Our early results for Parallel CMS were demonstrated at
Supercomputing ’98. The overall configuration of the
demonstrated system, still based on the DIS communication
and the multicast/MBONE networking is illustrated in Fig.
8 and it includes: a) Parallel CMS running on Origin2000;
b) a set of ModSAF vehicles running on SGI workstation;
and c) real-time 3D visualization front-ends, including Mak
Stealth and our SimVis tool described before.

More recently, we completed the process of converting
Parallel CMS from a DIS node to an HLA federate, and we
also constructed the JDIS bridge that allowed us to
effectively treat ModSAF nodes as HLA federates. Finally,
we also completed the PDUDB federate that allows us to
log simulation events (DIS PDUs or the equivalent HLA
interactions) in an SQL database and reply the whole
simulation or its selected/filtered segments on demand.

Figure 9: Architecture of WebHLA based Parallel CMS.

The overall configuration of the most recent,. HLA-
compliant version of Parallel CMS system is presented in
Fig 9. Parallel CMS federate runs on Origin2000 at ARL
MSRC, other modules (ModSAF, JDIS, PDUDB, SimVis)
are running on NPAC SGI and NT workstations. Using
JDIS, we can easily switch between DIS and HLA modes
and between real-time and playback simulation modes. The
latter is useful for analysis and demonstrations. In
particular, we also constructed a mobile laptop demo in the
playback mode with Microsoft Access based PDUBD
federate, Javasoft JDK based JDIS, and DirectX based
SimVis.

5. SUMMARY

We presented here our approach towards building
WebHLA as an interoperable simulation environment that
implements new DoD standards on top of new Web /
Commodity standards. In particular, we illustrated how
HLA/RTI can cooperate with Java (used in JWORB,
OWRTI, JDIS), CORBA (used in JWORB, OWRTI), XML
(used as alternative representation for FED files and as a
wire format for DIS PDUs) and Mocrosoft COM (used via
DirectX in SimVis front-end). Parallel CMS described
above is a rather sophisticated FMS application and yet we
were able to construct it in a low budget academic R&D
environment by making the optimal use and exploring fully
the synergy between all involved Web/Commodity
technologies listed above.

Hence, our initial results are encouraging and we therefore
believe that WebHLA with evolve towards a powerful
modeling and simulation framework, capable to address
new challenges of DoD and commodity computing in many
areas that require federation of multiple resources and
collaborative Web based access such as Simulation Based
Design and Acquisition.

6. ACKNOWLEDGEMENTS

This work was partially funded by the DoD High
Performance Computing Modernization Program’s
Programming Environment and Training (PET) project,
including ARL Major Shared Resource Center support,
Contract Number: DAHC 94-96-C-0010 with Raytheon
Systems Company, and CEWES Major Shared Resource
Center support, Contract Number: DAHC 94-96-C-0002
with Nichols Research Corp.

7. REFERENCES

Defense Modeling and Simulation Office (DMSO) 1998,
High Level Architecture, http://hla.dmso.mil.

D. Bhatia, V. Burzevski, M. Camuseva, G. Fox, W.
Furmanski and G. Premchandran, 1997, WebFlow - a
visual programming paradigm for Web/Java based coarse
grain distributed computing , Concurrency: Practice and
Experience, vol. 9, no. 6, June 97, 555-577.

Robert Orfali and Dan Harkey, 1998, Client/Server
Programming with Java and CORBA , 2nd Edition, Wiley.

G. C. Fox, W. Furmanski, H. T. Ozdemir and S. Pallickara,
1999, Building Distributed Systems for the Pragmatic
Object Web, Wiley, (in progress).

G. C. Fox, W. Furmanski, S. Nair, H. T. Ozdemir, Z.
Odcikin Ozdemir and T. A. Pulikal, WebHLA - An
Interactive Programming and Training Environment for
High Performance Modeling and Simulation, In
Proceedings of the SISO Simulation Interoperability
Workshop, SIW Fall 98, paper SIW-98F-216, Orlando, FL,
Sept 14-18, 1998)

7

G. C. Fox, W. Furmanski and H. T. Ozdemir, 1998,
Java/CORBA based Real-Time Infrastructure to Integrate
Event-Driven Simulations, Collaboration and Distributed
Object / Componentware Computing, In Proceedings of
PDPTA’98 (Las Vegas, NV, July 98.

G. C. Fox, W. Furmanski, S. Nair, H. T. Ozdemir, Z.
Odcikin Ozdemir and T. A. Pulikal, WebHLA - An
Interactive Multiplayer Environment for High Performance
Distributed Modeling and Simulation, In Proceedings of
the International Comference on Web-based Modeling and
Simulation, WebSim99, San Francisco, CA January 17-20
1999.

